

INTERNATIONAL JOURNAL OF APPLIED BIOLOGY AND PHARMACEUTICAL TECHNOLOGY

Volume: 2: Issue-1: Jan-Mar -2011

ISSN 0976-4550

Short communication

CORRELATION OF FLUORIDE WITH SOME INORGANIC CONSTITUENTS IN GROUND WATER IN SAIDNAGAR TALUKA, RAMPUR DISTRICT, UTTAR PRADESH, INDIA

Rajesh Kumar* and Dr.S.S Yadav**

*Research Scholar, Dept. of Chemistry, Govt.Raza (P.G.) College, Rampur (U.P.)

**Associate Professors, Dept.of Chemistry, Govt. Raza (P.G.) College, Rampur (U.P.)

Email:-krajesh33@yahoo.com

ABSTRACT: Ground water sample of Saidnagar Taluka of Rampur district of Uttar Pradesh, India have been collected either from the bore wells (from the part of the municipal water supply) or from the hand pumps (direct consumption) were determined the relationship of the fluoride content to other inorganic constituents in ground water samples from 14 different villages in the Saidnagar Taluka of Rampur district of Uttar Pradesh,India,the levels of various inorganic constituents in the water such as pH hardness, total hardness, alkalinity, Cl⁻, So₄²⁻, No₃⁻, Ca²⁺ and Mg²⁺ were determined, from correlation analysis was found to be positively related to total hardness, noncarbonated hardness, So₄²⁻, Ca²⁺ and Mg²⁺ but there appeared no significant association between the fluoride concentration and other parameter.

Keywords: Ground water, fluoride correlation, inorganic constituents, Rampur (Saidnagar Taluka)

INTRODUCTION

In spite of India's spectacular achievement in some areas of science and technology since independence, most of our rural areas and even many urban areas do not have access to safe drinking water. The government of India is determined to rectify this situation and consequently, supplying safe drinking water to rural and urban population has identified as one the "Technology Mission" to pursue by the nation. (1) Water, the precious gift to nature of human being is going polluted day by day with in increasing urbanization. India around 62.5 million people are suffering from disorder of teeth or bones through flourosis. (2) Fluoride (F) in drinking water is usually the main source of F intake and excessive consumption of F can cause a wide range of adverse health effects (3-7).To determine the F concentration of ground water and its correlation with other drinking parameters in this study, we examined the relationship between the F content of ground water and other inorganic constituents such pH, noncarbonated hardness (NCH),carbonate hardness (CH),total hardness (TH),Cl⁻,So₄²⁻,No₃⁻,Ca²⁺,Mg²⁺ in villages of Saidnagar Taluka of Rampur district area of Uttar Pradesh, India.

EXPERIMENTAL

STUDY AREA

The district Rampur is located at longitude 78.54E & 69.28E, latitude 28.25N & 29.10N spread in area of 2367 Km² falls in Moradabad division of Uttar Pradesh state with a population of approx.four million(8).The maximum 85% ground water is used for drinking purpose for the rural population in the source of bore wells and hand pumps.

WATER SAMPLING

A total number of 60 water samples were collected from privately owned manually operated hand pumps. Only those installations were selected for sampling whose water is used for domestic purpose.

Rajesh et al UAB PT ISSN 0976-4550

METHODOLOGY

The parameter such as total hardness(TH), Carbonate hardness(CH) ,alkalinity(ALK), Cl $^{-}$ and So $_4$ $^{2-}$ were determined by standard methods(9), and pH was determined using a pH meter. Since TH was greater than ALK, carbonate hardness (CH) was considered to be equal to ALK and noncarbonated hardness (NCH) was taken the difference between TH and CH (10) also for fluoride (F) determination Ca $_2$ $^{2+}$, Mg $_2$ $^{2+}$ and No $_3$ $^{2-}$ with ELICO CL-220 Flame Phtometer (11).

RESULTS

The fluoride concentration (F) and the inorganic parameter of the ground water in 14 villages are shown in (Table.1).As seen in Table1.Because of high So_4^{2-} levels, most of the total hardness in the ground water is due to NCH, CH.Morover the F content of water also has a significant and direct correlation with So_4^{2-} , NCH and TH (Table2).High concentration of So_4^{2-} , Ca^{2+} , Mg^{2+} , NCH and TH in our water samples may be attributed to the aquifer soil texture in this area (12), after multiple regression analysis of the data, the following equation was obtained. F=6.285+0.0016 So_4^{2-} -0.0472 No^3 -0.614 pH.As indicated by above equation SO_4^{2-} has a positive association with F, but No_3 - and pH have negative relationship.

Table 1 Analytical results of Ground water samples in 14 villages of Saidnagar Taluka.

Villages Name	F	pН	NCH	СН	TH	ALK	Cl	So ₄ ² -	No ₃	Ca ²⁺	Mg^{2+}
Mutyapura Bajar	2.80	7.13	636	245	830	235	67	760	2.5	217	78
Patti											
Hamirpur	2.42	7.17	1045	155	1210	175	58	980	5.8	262	167
Kaliya Nagla	2.31	7.14	1490	180	1666	170	416	1100	15.5	385	171
Bendu Khera	2.07	7.27	566	180	748	190	86	775	2.3	166	78
GaganNagla	2.08	7.46	1440	160	146	170	74	890	1.9	475	162
Nasimganj	1.97	7.74	565	165	728	185	46	790	10.8	155	68
Milak Nagli	1.97	7.74	535	165	730	185	37	670	10.6	188	56
Haunspur	1.90	6.75	920	240	1108	220	76	970	16.6	251	154
Saharia Narpat	1.77	7.38	460	146	627	240	86	710	4.5	241	25
Saharia Daraz	1.63	7.75	260	250	410	210	29	385	1.6	99	89
Paharpur	1.60	7.26	620	180	530	188	80	685	7.0	148	32
Runwa Nagla	1.69	7.16	312	218	760	218	170	615	22.9	235	81
Bhawanipur	1.90	7.23	298	260	548	260	19	515	16.7	248	89.5
Bijpuri	1.99	7.82	405	245	520	225	19	320	2.9	94	59.5

Table 2 Correlation Coefficient values of water quality parameter

Parameter	pН	NCH	СН	TH	ALK	Cl-	So ₄ ² -	No ₃	Ca ²⁺	Mg^{2+}
F	-0.427	0.651	-0.451	0.657	-0.451	0.238	0.723	-0.385	0.573	0.535
pН		-0.360	0.175	-0.356	0.285	-0.259	-0.471	0.309	-0.194	-0.366
NCH			-0.568	0.918	-0.538	0.574	0.823	0.236	0.956	0.838
СН				-0.453	1.56	-0.142	-0.620	0.288	-0.573	-0.346
TH					-0.162	0.682	0.953	0.257	0.973	0.846
ALK						-0.162	0.590	0.298	-0.503	0.376
Cl							0.659	0.675	0.639	0.568
So ₄ ² -								0.289	0.876	0.940
No ₃									0.184	0.186
Ca ²⁺										0.823

Page: 418

Rajesh et al ISSN 0976-4550

CONCLUSION

Most of the sample collected in different location of Saidnagar Taluka, view of high F content in certain part of locations, and then we recommended these of low F bottled drinking water is used in Saidnagar Taluka, Rampur (U.P.) India.

REFRENCES

- 1. P.C.Mishra, 2005, Thesis-"Some aspects of water quality of water in and around Rourkela". Department of Chemistry, NIT, Rourkela.
- 2. A.K. Susheela, 1999, Curr.Sci., 77 (10), 1250-1256.
- 3. B. Spittle, 2008, Dyspepsia associated with fluoridated water, fluoride, 41, 89-92.
- 4. R.J. Carton, 2006, Review of the 2006 United States National Research Council Report, Fluoride in drinking water., 39,163-72.
- 5. A.K.Susheela, P.Jethanan, 1996, circulating testosterone level in skeletal fluorosis patients. J. Toxicol. Clin. Toxicol., 34,183-189.
- 6. S.Dobaradaram, A.H.Mahvi, S.Dehdashti, D.Abadi, V.Rangbar, 2008, Drinking water fluoride and child dental caries in dashtestan, Iran., 41,200-206.
- 7. ADHA, AWWA, WEF, 1995, Standard methods for examination of water and waste water, 21st ed., Washington D.C., AWWA.
- 8. S.S.Yadav,Rajesh Kumar,2010, Assessment of Physico-Chemical status of ground water of four blocks(Suar,Milak,Bilaspur,Shahabad) in Rampur,Uttar Pradesh,India,Rasayan J Chem., Vol.3(3),589-596.
- 9. J.K.Price, 1991, Workbook applied month for water plant operators, Lancaster, Pennsylvania, Technomic Pub.Co...
- 10. D.Chakraborti, C.R.Candna, Samanta, U.K.Chowdhury, S.C. Mukherjee, AB pal, 2005, Fluorosis in Assam, India. Curr.Sci.78, 1421-1423.
- 11. S.S.Yadav, Rajesh Kumar, 2010, Contamination of fluoride content in ground water in Rampur city, Rampur, Uttar Pradesh, India, Ultra Chem., 6(3), 181-186.
- 12. K.Karthikeyan, K.Nanthakumar, P.Velmurugen, S.Tamilaran, 2008, Prevalence of certain inorganic constituents in ground water samples of Erode district, Tamilnadu with emphasis on fluoride, fluorosis and its remedical measures. Environ. Monit.Assess. DOI 10.1007/s 10661-008-0664-0.
